If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-9y+5=0
a = 1; b = -9; c = +5;
Δ = b2-4ac
Δ = -92-4·1·5
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{61}}{2*1}=\frac{9-\sqrt{61}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{61}}{2*1}=\frac{9+\sqrt{61}}{2} $
| 2(7x+32)=41+3x | | 1x^2-10x+300=0 | | 6n+-3n=12 | | 7x-4=-x+1+9x-5 | | -18h=-20h-14 | | 32-x=10 | | -18h=-20h−14 | | -17+4k=3k | | 15t+-12=-72 | | 8g−5g−4=−3+3g | | 2x-7(3x-1)=-12 | | 30-(x)^2=5 | | 10x+10+6x+4=54 | | 4x=(7x-12) | | 12/10x=15/7 | | 2w-5*(w+1)=3w+1 | | 9m−15=10m+16 | | −160=22+8*(3p−4) | | a+3/5=7/5 | | -0.7x^2+35x=0 | | 2(c+5)=42 | | 5n-4=340 | | 2w−5*(w+1)=3w+1 | | 4(n-2)+5n=1 | | -160=22+8*(3p-4) | | 11a+1=23 | | 3x-47=2x | | 8x+3x=6x-11 | | x/15=9/3 | | 3(-4+x)=5(-3+1) | | x/15=9# | | 11x+1=5(2x-1)=+6 |